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The extension of the phases of the structure factors of the organic crystal

C25H25NO2 from 77 starting individual phases using the maximum-entropy

method is reported. These starting phases were determined from 90

experimental triplet phases calculated from 215 measured  -scan three-beam

and four-beam diffraction pro®les obtained with a rotating-anode X-ray source,

where the  scans were around the reciprocal-lattice vectors of the 001, 002 and

003 re¯ections. The extension of the structure factors with phase values was

carried out using the maximum-entropy method for 2040 measured two-beam

Bragg diffraction intensities with 77 starting phases and the symmetry of the

space group as the constraints. Use of structure-factor triplets as constraints

for entropy maximization was also attempted. The minimum �2 criteria were

applied to the maximum-entropy extrapolation to discern the best phase set to

be used as the new constraints for the next step of generating new phases. With

this phase-extension procedure, more than 100 phases were determined and an

electron-density map at 1.97 AÊ was deduced.

1. Introduction

Intensity measurements often provide no phase information in

physics experiments. This is also true for X-ray diffraction

from crystals because the intensity of a Bragg re¯ection is

proportional to the product of the associated structure factor

and its complex conjugate. The phase information of the

structure factor is therefore lost. This fact constitutes the well

known X-ray phase problem in diffraction physics and X-ray

crystallography. In the literature, there are several ways of

solving this problem, such as the direct-method heavy-atom

method (see, for example, Schenk, 1991), maximum-entropy

methods (see, for example, Bricogne, 1984) and many others

(see, for example, Rossmann, 1972; Woolfson & Fan, 1995).

On the other hand, multiple diffraction techniques, utilizing

the coherent interaction among diffracted beams to extract

phase information from intensity measurements, have recently

demonstrated their capability of direct phase determination.

This includes the qualitative determination (Post, 1977;

Chapman et al., 1981; Chang, 1982; Juretschke, 1982; HuÈ mmer

& Billy, 1982; Hùier & Marthinsen, 1983; Mo et al., 1988; Shen,

1998; and many others cited in Weckert & HuÈ mmer, 1997 and

Chang, 1998), semiquantitative determination (Shen &

Colella, 1987; HuÈ mmer et al., 1989) and quantitative deter-

mination (Chang & Tang, 1988; HuÈ mmer et al., 1990; Chang,

Stetsko et al., 1999) of the phases of structure-factor multiplets

of small (HuÈ mmer et al., 1989; Chang & Tang, 1988; Shen &

Finkelstein, 1990) and macromolecular crystals (HuÈ mmer,

Schwegle & Weckert, 1991; Chang et al., 1991; Weckert et al.,

1993; Huang et al., 1994; Mo et al., 1998; Chang, Chao et al.,

1999; Weckert et al., 1999; HoÈ lzer et al., 2000; Shen et al., 2000).

Although this potentially useful technique gives a direct

measure of phases, we are still facing challenging problems in

how to make this physical phasing technique practical. For

example, to determine in a short time a large number of useful

re¯ection phases or even electron-density maps is one of the

urgent issues, especially for crystals involving a large number

of independent atoms in an asymmetric crystal unit cell. The

conventional Renninger scan (Renninger, 1937) and the

recently developed reference-beam (Shen, 1998) and stereo-

scopic multibeam imaging techniques (Chang, Chao et al.,

1999) can only provide multibeam intensity pro®les for rela-

tively strong re¯ections. For multiple diffraction involving

weak re¯ections, useful three-beam pro®les may not always be

retainable. In addition, for the analysis of crystal structure, the

phase information for as many re¯ections as possible is

required. Moreover, the fact that some macromolecular

crystals may deteriorate during the exposure to X-radiation at

room temperature imposes the need for phase extension from

the limited number of experimentally accessible phases to

those re¯ections of unknown phases. In this paper, we present

the details of the approach for phase extension and re®nement

by combining the multiple diffraction technique with the

maximum-entropy principles (Chang & Wang, 1996). Namely,

we ®rst use this diffraction method to have a number of phases

determined and phase relationships among re¯ections estab-



lished and then, with these known phases and phase relations

as the constraints, employ the maximum-entropy method to

infer new phases. As a step to test the validity of this approach,

we used an organic crystal of known structure as a case study.

2. Experimental

In a multiple diffraction experiment, usually the crystal is ®rst

aligned for a (primary) re¯ection, say G, and is then rotated

around the reciprocal-lattice vector g of this G re¯ection, say

 scan. This rotation could bring an additional set of planes of

the secondary re¯ection L into position to diffract the incident

beam (see, for example, Chang, 1984). The interaction among

the diffracted beams within the crystal gives rise to intensity

variation on the primary re¯ection IG. The multiple diffraction

pattern, IG versus  , of this three-beam interaction

(G=L=Gÿ L) is thus obtained, where Gÿ L is the coupling

between the primary re¯ection G and the secondary re¯ection

L. The phase �3 of the structure-factor triplet FLFGÿL=FG can

be quantitatively determined (Chang & Tang, 1988; Chang et

al., 1991) by analyzing the intensity pro®les of a single

three-beam or two centrosymmetrically related three-beam

diffractions (HuÈ mmer et al., 1990). More speci®cally, cos �3

depends on the intensities at the half-maxima (or minima)

and sin �3 is proportional to the intensities at the

maximum (or minimum). For four-beam diffractions

�G=L1;L2=Gÿ L1;Gÿ L2� involving a rotation of a twofold

or a twofold screw axis (HuÈ mmer, Bondza & Weckert, 1991),

this criterion in phase determination still holds, where L1 and

L2 are the two secondary re¯ections. The predominant �3 is

therefore the phase of FL1FGÿL1=FG. The triplet phase values

are usually determined with an accuracy of about 20 to 40� for

relatively strong multiple diffraction (Chang et al., 1991). For

very weak diffraction, the error in the determined phase could

be large. To determine the phase � of each individual structure

factor F, a number of triplet phases with the involved re¯ec-

tions G, L and Gÿ L linked with the space-group symmetry

are required (Han & Chang, 1983).

Experimentally, we chose the organic crystal (3R,5S,6R)-3-

benzyl-4, 5-dimethyl-3, 6-diphenylperhydro-1, 4-oxazin-2-one,

C25H25NO2 [space group P21212, cell dimensions: a � 20:2992,

b � 14:8558, c � 6:9830 AÊ , 4 molecules in a unit cell (Chang

et al., 1994)] as a test sample for illustration. The multiple

diffraction experiments were performed with an 18 kW

rotating-anode X-ray source. The angular divergences of

X-rays from a Cu anode incident on the sample were trimmed

down to 0.03� in both the vertical and horizontal directions by

using two sets of slits, at the front and the exit ends of a 37 cm

long evacuated beam pipe. The crystal was mounted on a

modi®ed 4� 1-circle Huber diffractometer where the ®fth

circle was for the detector motion in the vertical plane to

monitor the secondary re¯ection. A scintillation counter with

a receiving slit 0.5 � 0.5 mm in front of it was used as the

detector. Cu K�1 radiation (wavelength � � 1.54056 AÊ ) was

employed. The distances from the source to the crystal and

from the crystal to the ®rst collimating slit placed before the

crystal were 82 and 10 cm, respectively. The distance from the

crystal to the receiving slit was 39 cm. The 001, 00�1, 002, 00�2,

003 and 00�3 were chosen as the primary re¯ections for various

 scans. The reason for choosing low-index re¯ections along

basis vectors is to increase the link among the structure-factor

triplets. 215  -scan pro®les were obtained. For illustration,

Figs. 1 and 2 are the four-beam diffraction pro®les, I�003�
and I�00�3� versus  , for �00�3�=�10�1��10�2�=��10�2���10�1� and

�003�=��2�51���2�52�=�252��251� cases, respectively. IN and OUT

indicate the diffraction occurs as the reciprocal-lattice point of

the secondary re¯ection moves towards (incoming) and leaves

from (outgoing) the surface of the Ewald sphere.

3. Experimental determination of the starting phase set

The corresponding triplet phase values to the measured three-

beam and four-beam diffraction pro®les were determined

according to the quantitative analysis procedure reported by

Chang & Tang (1988) and Chang et al. (1991): For a given

three-beam diffraction, (0;G;L), the relative intensity distri-

bution IG of the primary re¯ection G is considered as the sum

of the phase-dependent (dynamical) part ID and the phase-

independent (kinematical) part IK:

IG�� � � �IG�3� ÿ IG�2��=IG�2� � ID � IK; �1�
where IG(2) and IG(3) are the two- and three-beam intensities

of the primary re¯ection, respectively. And � �  ÿ  0,  0

being the angular position at the exact three-beam point.

According to Chang & Tang (1988), IK is a symmetric function

of (� ), i.e.
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Figure 1
Multiple-diffraction pro®les of four-beam cases: (000)(00�3)(10�1)(10�2)
and (000)(003)(�101)(�102). The theoretical and experimental phase values
are indicated.
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IK � A��=2�2L�� � �2�
and ID can be expressed as

ID � B�2�� � cos �3 ÿ � sin �3�L�� �; �3�
where the proportionality constants A and B are related to the

structure-factor product jFGÿLjjFLj=jFGj and Lorentz±polar-

ization factor, and L(� ) is de®ned as

L�� � � 1=��� �2 � ��=2�2�: �4�
� is the FWHM of the three-beam diffraction pro®le. In

principle, the quantities A, B, �3,  0 and even � could be

determined by least-squares ®tting of the diffraction pro®le

with the calculated one from (1). In practice, for more reliable

phase determination, the two centrosymmetrically related

three-beam diffractions, say case A � �0;G;L� and case

B � �0;ÿG;ÿL�, provide the following relationship:

B�2�� � cos �� � sin ��L � IGA�� � ÿ A��=2�L �5�
and the term A satis®es

IGA�� � 0� � IGB�� � 0� � 2A: �6�
Again, with least-squares ®tting, the parameters B,  0, � and �
can be optimized for (5). For convenience,  0 and � were

determined experimentally. Thus the phase � was determined

accordingly. Similarly, predominant triplet phases associated

with four-beam diffractions, involving a 2 or 21 rotation axis,

can also be determined. An alternative is to employ the quasi-

universal function and to determine the phases from the

intensity ratios at maximum and minimum (Chang, Stetsko et

al., 1999).

Using this procedure, 90 triplet phases (sums) were deter-

mined from 215  -scan pro®les. From these triplet phase sums,

the phases of 77 individual re¯ections were determined, which

are listed in Table 1. Among these determined phases, ®ve

have errors larger than 40� owing to the involvement of weak

multiple diffraction. To illustrate the phase-determination

procedure, we show below the steps towards the determina-

tion of the (002) phase: From the four-beam cases,

�00�1�=�23�1��230�=��2�30���2�3�1�, �00�3�=�230��23�3�=��2�3�3���2�30�,
�00�1�=�231��23�2�=��2�3�2���2�31�, �00�3�=�23�1��23�2�=��2�3�2���2�3�1�,
�00�2�=�231��23�3�=��2�3�3���2�3�1� and the three-beam case,

�00�2�=�23�1�=��2�3�1�, the following phase sums are obtained

according to Table 2:

ÿ ��00�1� � ��23�1� � ���2�30� � 178�

ÿ ��00�3� � ��230� � ���2�3�3� � 354�

) ��001� � ��003� ÿ ��231� ÿ ��233� � 532� �7�
ÿ ��00�1� � ��231� � ���2�3�2� � 185�

ÿ ��00�3� � ��23�1� � ���2�3�2� � 173�

) ��001� � ��003� � 2��231� � 12� �8�
ÿ ��00�2� � ��23�1� � ���2�3�1� � 341�

) ��231� � 1
2��002� ÿ 171� �9�

ÿ ��00�2� � ��231� � ���2�3�3� � 236�

) ��233� � 3
2��002� ÿ 407� �10�

��001� ÿ 2��002� � ��003� � 315� �11�
��001� � ��002� � ��003� � 353�: �12�

The phase relations due to the symmetry of the space group

P21212 are employed. Equations (11) and (12) are obtained

from the sum of �7� � �9� � �10� and the combination of (8)

and (9), respectively. This leads to

��002� � 13�: �13�
According to the space group, we set ��002� � 0� for the

centric 002 re¯ection. Similar procedures are carried out for

the other triplet phase sums that lead to 77 determined indi-

vidual phases, among which 30 are centric and 47 are acentric

re¯ections.

4. Phase extension using maximization of entropy

The procedure of phase extension, based on the principle of

entropy maximization, starts with the experimentally deter-

mined phases and amplitudes of the structure factors and the

structure-factor triplets as the constraints. The entropy S of

the electron distribution in the crystal unit cell is written as

S � ÿP
r

��r� ln���r�=m�r��; �14�

where the electron density ��r� is considered as the probability

of ®nding an electron at the position r, and m�r� is the

uniformly distributed electron density (i.e. no prior map is

used). To maximize the entropy, the Lagrangian multiplier

technique is used where the Lagrangian L takes the form

Figure 2
Multiple diffraction pro®les of four-beam cases: (000)(003)(�2�51)(�2�52) and
(000)(00�3)(25�1)(25�2).



L � S�P
H

��HrCHr � �HiCHi� �
P
KL

��KLrCKLr � �KLiCKLi�;
�15�

where CHr and CHi are the constraints on the real and the

imaginary parts of the difference between the calculated Fc
H

from entropy maximization and the experimental F0
H deter-

mined from two-beam Bragg re¯ection and multiple diffrac-

tion intensity. CKLr and CKLi are the constraints on the real and

the imaginary parts of the differences between the calculated

and the measured triplets FHFKFL. The �'s are the Lagrangian

multipliers.

Since there are differences in magnitude between FH and

the triplets FHFKFL, we ®rst calculate �Hr and �Hi of (15) by

treating the CHr and CHi as the zeroth-order perturbation and

then look for �KLr and �KLi using the CKLr and CKLi as the

®rst-order perturbation. Because FH can be ®rst optimized in

the zeroth-order calculation, the subsequent optimization of

FHFKFL can be simpli®ed by considering only the product

FKFL. The constraints C can be expressed as

CHr � Fc
H ÿ jF0

Hj cos �0
H �16a�

CHi � Fc
Hi ÿ jF0

H j sin �0
H �16b�

CKLr � Fc
KrF

c
Lr ÿ Fc

KiF
c
Li ÿ F0

KF0
L cos��K � �L� �16c�

CKLi � Fc
LrF

c
Ki ÿ Fc

KrF
c
Li ÿ F0

KF0
L sin��H � �L�; �16d�

where the phase sum �K � �L � �0
3�HKL� ÿ �0

H , �H being the

phase of FH and �3(HKL) the triplet phase of FHFKFL. The

superscripts c and 0 stand for the calculated and the observed

values, respectively. Following the maximization procedure,

i.e. @L=@� � 0, the zeroth-order and the ®rst-order electron

densities take the forms:

�0�r� � m�r� exp ÿ1�P
H

��Hr cos 2�H � r� �Hi sin 2�H � r�
� �

�17�
�1�r� � �0�r� exp

nP
K;L

���KLrF
c
Kr � �KLiF

c
Ki� cos 2�L � r

� ��KLiF
c
Kr � �KLrF

c
Ki� sin 2�L � r

� ��KLrF
c
Lr � �KLiF

c
Li� cos 2�K � r

� ��KLiF
c
Lr � �KLrF

c
Li� sin 2�K � r�

o
; �18�

where the Fc's are calculated from �0. In addition, the

symmetry of the space group to which the crystal belongs is

considered: Hereafter, we refer to those re¯ections of

providing constraints as in the {H} basis set for clarity. The

numbers n1 and n2 are the number of the constraints involving

the re¯ections with h� k � 2n and the number of the

constraints of the re¯ections with h� k � 2n� 1. By

considering these two sets of re¯ections, the electron density

��r� derived from (17) becomes

��r� � m�r� exp ÿ1� 2
Pn1

j�1
h�k�2n

wEj
�r� � 2

Pn2

l�1
h�k�2n�1

wOl
�r�

8<:
9=;;
�19�

where

wEj
�r� � �AHj

fcos 2���hkl�j � r� � cos 2��� �hkl�j � r�
� cos 2���h �kl�j � r� � cos 2���hk�l�j � r�g
� �BHj

fsin 2���hkl�j � r� ÿ sin 2��� �hkl�j � r�
ÿ sin 2���h �kl�j � r� ÿ sin 2���hk�l�j � r�g �20a�

wOl
�r� � �AHl

fcos 2���hkl�l � r� ÿ cos 2��� �hkl�l � r�
ÿ cos 2���h �kl�l � r� � cos 2���hk�l�l � r�g
� �BHl

fsin 2���hkl�l � r� � sin 2��� �hkl�l � r�
� sin 2���h �kl�l � r� ÿ sin 2���hk�l�l � r�g: �20b�

The symmetry of the space group has been considered in

deriving the w's of (20a) and (20b), and the �'s are the same

for the re¯ections belonging to the same family fHjg � fhklg.
In the matrix calculation, we employ also the diagonalization

technique to scale down the dimension from n3 to n so as to

speed up the calculation (Bricogne & Gilmore, 1990; Drabold

& Sankey, 1993). The electron-density distribution ��r� given

in (19) can be calculated by the following recurrent proce-

dures:
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Table 1
The 77 individual phases derived from multiple-diffraction experiments.

No. hkl � (�) �th (�) No. hkl � (�) �th (�)

1 001 180 180 2 002 0 0
3 003 180 180 4 011 90 90
5 012 ÿ90 ÿ90 6 013 90 90
7 031 ÿ90 ÿ90 8 032 ÿ90 ÿ90
9 033 ÿ90 ÿ90 10 040 180 180

11 041 0 0 12 042 180 180
13 101 ÿ90 ÿ90 14 102 ÿ90 ÿ90
15 110 180 180 16 111 67 42
17 112 51 91 18 113 108 89
19 120 0 0 20 121 ÿ1 ÿ6
21 122 ÿ140 ÿ85 22 123 111 37
23 130 180 180 24 131 ÿ81 ÿ66
25 132 ÿ143 ÿ156 26 140 0 0
27 141 154 ÿ118 28 150 180 180
29 151 ÿ161 ÿ144 30 152 ÿ55 ÿ64
31 200 180 180 32 201 180 180
33 210 180 180 34 211 ÿ1 ÿ64
35 212 ÿ167 ÿ163 36 213 175 169
37 230 0 0 38 231 10 15
39 232 ÿ3 ÿ1 40 233 134 170
41 240 0 0 42 241 ÿ77 ÿ125
43 242 73 139 44 301 0 0
45 302 90 90 46 310 0 0
47 311 ÿ159 ÿ146 48 312 ÿ34 ÿ42
49 320 180 180 50 321 ÿ1 ÿ8
51 322 154 154 52 330 180 180
53 331 ÿ82 ÿ90 54 332 ÿ125 ÿ126
55 400 180 180 56 401 0 0
57 402 0 0 58 403 0 0
59 410 0 0 60 411 ÿ82 ÿ65
61 430 0 0 62 431 99 93
63 432 52 87 64 440 180 180
65 441 ÿ85 ÿ39 66 442 140 98
67 443 ÿ165 ÿ111 68 501 90 90
69 502 ÿ90 ÿ90 70 600 180 180
71 601 180 180 72 610 180 180
73 611 ÿ72 ÿ58 74 612 176 151
75 620 180 180 76 621 ÿ22 ÿ8
77 622 28 ÿ33
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Step 1: Set the initial values of the Lagrangian multipliers

��0�AHj
� ��0�BHj

� 0:1 for all j (based on the results of several

trials).

Step 2: Substituting ��0�AHj
; ��0�BHj

; j � 1; 2; . . . ; n1 � n2, into

(19), ��r� � ��1��r� is obtained, where ��1��r� is the ��i��r� with

i � 1 (the ®rst recurrent cycle of calculation).

Step 3: Calculate the total number of electrons N�1� in the

unit cell from ��1��r�, i.e.P
r

��1��r� � N
�1� �21�

and normalize the electron-density distribution such thatP
r

q�1��r� � F000 �22�

with

q�1��r� � ��1��r�F000=N�1�; �23�
where F000 is a reference structure-factor amplitude of the 000

re¯ection.

Step 4: Calculate F
�1�
Hj

for j � 1; 2; . . . ; n1 � n2 via the fast

Fourier transform (FFT) of q�1��r� and calculate also the �2
H as

�2
H�1� �

P
j

jF�1�Hj
ÿ Fobs

Hj
j2=N; �24�

where N is the total number of re¯ections used in the calcu-

lation. The summation is taken over the re¯ections that

impose the constraints on the entropy maximization, i.e. over

the {H} set.

Step 5: Substitute the calculated F
�1�
Hj

, j � 1; 2; . . . ; n1 � n2,

into the constraints (16) and employ the Newton±Raphson

method (Press et al., 1992) to determine the necessary

Table 2
The determined triplet phase invariants from the multiple diffraction
experiments �3 = �(ÿG) + �(L) + �(GÿL) for three-beam cases (0, G, L)
and �3 = �(ÿG) + �(L1) + �(GÿL1) = �(ÿG) + �(L2) + �(GÿL2) for four-beam
(0, G, L1, L2) cases.

Number Secondary re¯ections L �3 (�) exp �3 (�) theo

(i) Primary re¯ection G = 00�1
1 �111; �11�2 163�23 ÿ131
2 �210; �21�1 ÿ8�19 ÿ1
3 031; 03�2 167�32 180
4 040; 04�1 ÿ9�23 0
5 150; 15�1 122�20 144
6 140; 14�1 26�19 298
7 130; 13�1 40�3 66
8 240; 24�1 ÿ32�5 ÿ55
9 231; 23�2 185�11 ÿ163

10 120; 12�1 181�33 ÿ173
11 340; 34�1 122�30 ÿ137
12 230; 23�1 178�37 165
13 440; 44�1 85�4 39
14 330; 33�1 94�32 90
15 220; 22�1 238�28 252
16 321; 32�2 24�31 17
17 430; 43�1 84�8 87
18 110; 11�1 ÿ30�5 ÿ42
19 211; 21�2 ÿ14�20 ÿ18
20 320; 32�1 ÿ17�21 8
21 620; 62�1 16�24 8
22 310; 31�1 ÿ39�7 ÿ34
23 410; 41�1 262�31 245
24 610; 61�1 18�18 58
25 301; 30�2 202�33 180
26 600; 60�1 179�21 180
27 400; 40�1 ÿ5�12 0
28 200; 20�1 200�25 180
29 �1�21; �1�2�2 165�23 258

(ii) Primary re¯ection G = 00�2
1 14�1 114�4 236
2 231; 23�3 236�36 ÿ155
3 350; 35�2 84�7 117
4 13�1 163�30 133
5 24�1 154�23 ÿ111
6 01�1 183�15 180
7 441; 44�3 80�1 72
8 23�1 341�44 ÿ30
9 12�1 2�42 13

10 44�1 87�18 77
11 33�1 164�28 173
12 110; 11�2 105�9 89
13 43�1 162�28 173
14 32�1 3�24 17
15 11�1 ÿ135�37 ÿ84
16 62�1 45�30 16
17 21�1 2�39 2
18 31�1 ÿ42�33 ÿ67
19 41�1 83�13 130
20 61�1 144�40 116
21 60�1 ÿ23�40 0
22 50�1 153�26 180
23 40�1 31�11 0
24 30�1 160�25 180
25 20�1 78�12 0
26 10�1 173�34 180
27 1�20; 1�2�2 ÿ140�29 ÿ85
28 011; 01�3 11�39 0
29 031; 03�3 27�11 0
30 160; 16�2 ÿ118�10 ÿ120
31 04�1 22�30 0
32 150; 15�2 128�38 ÿ116
33 121; 12�3 ÿ112�21 ÿ43
34 020; 02�2 13�10 0
35 03�1 156�27 180

Table 2 (continued)

Number Secondary re¯ections L �3 (�) exp �3 (�) theo

36 15�1 ÿ38�11 ÿ71

(iii) Primary re¯ection G = 00�3
1 03�1; 03�2 1�29 0
2 25�1; 25�2 ÿ32�17 ÿ46
3 02�1; 02�2 176�31 180
4 13�1; 13�2 44�14 42
5 24�1; 24�2 184�30 165
6 230; 23�3 354�26 10
7 23�1; 23�2 173�35 166
8 44�1; 44�2 125�8 120
9 01�1; 01�2 168�28 180

10 33�1; 33�2 27�20 36
11 110; 11�3 ÿ108�23 ÿ89
12 43�1; 43�2 29�37 0
13 22�1; 22�2 203�48 159
14 53�1; 53�2 150�15 163
15 11030 �1; 11030 �2 177�40 203
16 62�1; 62�2 174�15 ÿ138
17 61�1; 62�2 98�17 84
18 31�1; 31�2 13�5 9
19 400; 40�3 ÿ10�37 0
20 50�1; 50�2 178�27 180
21 40�1; 40�2 119�21 180
22 2�10; 2�1�3 175�6 169
23 10�1; 10�2 7�43 0
24 04�1; 04�2 31�17 0
25 15�1; 15�2 37�3 28



adjustment �� on the �'s so that F
�1�
Hj

is within the experimental

standard deviation of Fobs
Hj

. Namely,

@��1�

@�Hj

" #
���Hj

� � �F�1�Hj
ÿ Fobs

Hj
�: �25�

From this we obtain a new set of Lagrangian multipliers:

��2�AHj
� ��1�AHj

� ���1�AHj
;

��2�BHj
� ��1�BHj

� ���1�BHj
;

(
j � 1; 2; . . . ; n1 � n2:

Step 6: Repeat the same procedures as given in steps 2, 3, 4

and 5 for the new set of �'s.

Step 7: Compare the calculated �2
H�i� 1� with �2

H�i�: If

�2
H�i� 1�<�2

H�i�, then proceed with the iterative cycle from

steps 3, 4, 5 and 6. If �2
H�i� 1�>�2

H�i�, then stop the recurrent

calculation.

Following the above steps, we ®rst use the 77 experimental

structure factors, both magnitudes and phases, and 8 forbidden

re¯ections, 100, 300, 500, 700, 010, 030, 050 and 007 as the

constraints. With these 85 re¯ections belonging to the {H} set,

we then re®ne the fFHj
g by following steps 4 and 5 so as to

determine the most proper values for �'s such that a minimum

value of �2
H with H 2 fHg is reached. From these � values, the

electron density ��r� is calculated by using (19). We then add a

re¯ection K to the {H} basis set. If K is a centric re¯ection,

then we assume its phase value is either 0 or 180� and follow

steps 1 to 7 to obtain a minimum �2
H value, except that

��0�AK � 0:1 and ��0�BK � 0:1 for the K re¯ection. The phase

�K is determined according to the minimum of the two

calculated �2
H��K� 0�� and �2

H��K� 180��. Namely, if

�2
H��K� 0��<�2

H��K� 180��, the correct phase is �K� 0�. If K

is an acentric re¯ection, its nominal phase � can be calculated

from the ��r� just obtained. The possible values of �K are then

assumed to be �, � + 90�, � + 180� and � + 270�, respectively, to

cover the four quadrants in the phase space. Following steps

1±7, we calculate �2
H for each of the assumed phases and

choose as the correct phase the one with a minimum �2
H value.

In the phase-extension procedure, we used the �2
H, calcu-

lated from the {H} set, to select the correct phase values. For

comparison, in addition to entropy S, the likelihood was also

calculated as a criterion for the phase determination of the

structure factors of the {K} re¯ections.

According to Bricogne & Gilmore (1990), the following

expressions were used for calculating the log likelihoods:

La �
X
k2K

acentric

log I0

2No

"K

� �
jUKjobsjUME

K j
� �

ÿ No

"K

� �
jUME

K j2
� �

�26�
for acentric re¯ections, and

Lc �
X
k2K

log cos ch
No

"K

� �
jUKjobsjUME

K j
� �

ÿ No

2"K

� �
jUME

K j2
� �

�27�
for centric re¯ections, where I0 is the zeroth-order modi®ed

Bessel function, "K is the statistical weight and No is the total

number of atoms in the unit cell. jUKjobs and UME
K are the

observed modulus of the unitary structure factor and of the

maximum-entropy-deduced unitary factor, respectively.

5. Results and discussion

In the phase-extension calculation, the unit cell is divided into

16 � 16 � 8 pixels along a, b and c axes. The 85 individual

phases (Table 1), 90 triplet phases (Table 2) and the intensity

measurements of the data collection for structure-factor

moduli were used as the input for maximizing the entropy and

determined the electron density by substituting the param-

eters w, calculated by the Newton±Raphson method, into (19).

The same procedure as described in x4 was repeated for many

cycles. The �2
H, entropy S and likelihood L were calculated

accordingly. The total number of re¯ections in the {K}

set was 256 ÿ 85 = 171, where 256 = 8 � 8 � 4 covers one

quadrant of the {hkl} in the reciprocal space.

The selection of a K re¯ection for phase extension follows

the principles described below:

(i) Those re¯ections with the largest number of connections

in the experimental triplets, i.e. experimental �1 and �2

relations, were chosen as the ®rst K re¯ections for phase

extension.

(ii) Those re¯ections with large values of the product

jFobs
k j � jFME

k j were selected.

(iii) Centric and acentric K re¯ections were chosen alter-

natively for phase extension.

(iv) K re¯ections with large d* and small d* were alter-

natively selected for phase calculation.

Following these guidelines, Tables 3, 4 and 5 list the ®rst

few steps of phase extension. Step 1 is the initial calculation

for the starting 85 re¯ections. From steps 2-1 to 2-8, the centric

re¯ections 730, 450, 340 and 341 were chosen for calculation.

From the entropy maximization and the �2 relation from the

triplet, No. 11 of Table 2(i), we have

ÿ��00�1� � ��340� � ���3�4�1� � 122�:
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Table 3
Entropy S, likelihood L and �2

H values for the ®rst few phase-extension
steps.

Step N S L �2
H � 10ÿ5

1 85 ÿ0.4396 2405.05 0.00079
2-1 89 ÿ0.4665 2464.99 0.00080
2-2 89 ÿ0.4638 2780.86 0.00125
2-3 89 ÿ0.4733 2621.59 0.00100
2-4 89 ÿ0.4717 2748.61 0.00145
2-5 89 ÿ0.4225 2606.64 0.00081
2-6 89 ÿ0.4214 2698.00 0.00187
2-7 89 ÿ0.4826 2499.84 0.00162
2-8 89 ÿ0.4786 2614.58 0.00207
3-1 91 ÿ0.4665 2765.25 0.00098
3-2 91 ÿ0.4729 2682.15 0.00142
3-3 91 ÿ0.4646 2808.82 0.00165
3-4 91 ÿ0.4635 2713.41 0.00203
4-1 93 ÿ0.4700 2839.63 0.00219
4-2 93 ÿ0.4700 2845.98 0.00368
4-3 93 ÿ0.4687 2870.29 0.00329
4-4 93 ÿ0.4702 2876.35 0.00456
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Namely,

��341� � ��001� � ��340� ÿ 122�:

Since �(001) is known from Table 1, the phase of 341 can be

determined if the phase of 340 is known. Table 4 lists the

assumed phase combination for phase-extension calculation.

The entropy, likelihood and �2
H values are listed in Table 3. As

can be seen from the de®nitions, S is an indicator of the

electron-density distribution in the unit cell; L re¯ects the

degree of consistency between the structure factors jFME
K j and

jFobs
K j. �2

H is related to the matching between the structure

factors FME
H and Fobs

H of the {H} set, which is a strong phase-

dependent parameter.

Since the � for 16 � 16 � 8 pixels is of low resolution,

correct phases may not be associated with the maximum value

of S. Similarly, for a small number of K re¯ections, the largest

likelihood may not lead to the correct phases (Bricogne, 1984).

In comparison with the theoretical phases calculated from the

known crystal structure, we found that the above statement

was correct and moreover the minimum �2
H seemed to give a

clear indication of having correct phases determined. Hence,

for steps 2-1 to 2-8, the correct phase values are �(730) = 0�,
�(450) = �(340) = 180�, and �(341) = ÿ122�, as assigned in step

2-1.

The process was continued, putting in more K re¯ections

for phase extension: In steps 3-1 to 3-4, we intended to

determine the phases of the centric re¯ection 370 and acentric

re¯ection 073. The phase of the latter is either 90 or ÿ90�

according to the space group. Table 5 lists the possible phase

combinations for phase extension. In steps 4-1 to 4-4, we

continued phase extension for centric re¯ection 560 and

acentric re¯ection 072. All the phase combinations turned out

to have larger �2
H values than the correct phase combination.

This again ensured that the phase values with the lowest �2
H

are the correct choice.

In the following steps, the phase extension was carried out

for: (I) acentric 071, 671; (II) acentric 631; (III) centric 220,

510, 710 and acentric 221 and 222. For acentric re¯ections, we

extended the phase of one re¯ection each step. The calcula-

tions then continued for the rest of re¯ections.

Several distinct capabilities and characteristics of the

present approach are shown as follows:

(i) Phase determination and re®nement using individual

re¯ections as the constraints.

Fig. 3(a) shows the calculated phase � for the 111 re¯ection

versus the number N of individual re¯ections used as the

constraints, where the initial phase value 67� of 111 was

determined from the multiple diffraction experiments. The

calculation conditions were 16 � 16 � 8 pixels in the a, b, c

axes respectively. As the number of constraints increases, the

calculated phase value is re®ned to a value approaching the

asymptotic value � = 59�, which is closer to the theoretical

value of 42� calculated from the known structure. Fig. 3(b)

shows a similar effect on the phase determination of the 252

re¯ection, the phase of which was originally unknown. When

the number of re¯ections was 150, we employed the present

phase-extension procedure to calculate the �2
H values for

the four possible phase values, �K, �K + 90�, �K + 180� and

�K + 270�, of this acentric re¯ection. The asymptotic value

� = 122� with the smallest �2
H value is very close to the

theoretical value 114�. Similarly, the convergence of the

calculated phases of the 431 and 221 re¯ections is also

obtained as the number of re¯ections (constraints) increases.

The initial phase values of 431 and 221 used for phase

extension are 98 and 32�. The former is deduced from the

multiple diffraction experiments and the latter is calculated

from entropy maximization. The ®nal converged phase values

are 94 and ÿ55�, respectively.

(ii) Phase re®nement using triplet phase relations as the

constraints.

Table 4
Input phase values (�) for phase extension, step 2.

Step

hkl 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8

730 0 0 180 180 0 0 180 180
450 180 0 180 0 180 0 180 0
340 180 180 180 180 0 0 0 0
341 ÿ122 ÿ122 ÿ122 ÿ122 57 58 58 58

Figure 3
Convergence of the individual phase � versus the number of re¯ections N
used as the constraints for (a) 111 and (b) 252 re¯ections.

Table 5
Input phase values (�) for phase extension, step 3.

Step

hkl 3-1 3-2 3-3 3-4

073 90 90 ÿ90 ÿ90
073 90 90 ÿ90 ÿ90



Following (15), the phase value of an individual re¯ection

can be re®ned by using triplet relations as the constraints in

entropy maximization, while maintaining the �Hr and �Hi of

the individual re¯ections unchanged. Fig. 4 demonstrates the

ability of this calculation scheme for phase re®nement of the

121 and 110 re¯ections. The initial phase values of this ®gure

are those calculated for maximum entropy with the individual

re¯ections as the constraints.

(iii) The role of �2
H .

Fig. 5(a) shows the calculated �2
H values of the H set when

adding each time in the H set a K re¯ection. Fig. 5(b) shows

the convergence of the minimum �2
H as the number of iterative

cycles increases for a typical situation. In Fig. 5(a), if the K

re¯ection is acentric, only the maximum and minimum �2
H

values are shown. Evidently, those correctly assigned phases

have minimum �2
H values (solid circles). However, the corre-

sponding overall trends of entropy S and likelihood L are

always increasing as the number of re¯ections (constraints) is

increased. In some phase-extension steps, especially for the

small number of re¯ections involved, the correct phases may

not necessarily be associated with the maximum values of S

and L.

In the phase-extension procedure, the number of re¯ections

should be comparable with the number of pixels used in order

to have phases correctly determined. For 16 � 16 � 8 pixels,

the highest-order re¯ections whose phases can be correctly

determined are (�7,�7,�3). With this scheme, we are able to

determine more than 100 new phases in addition to the 85

experimental phases. Also, the approximate electron-density

map on the ab plane at 1.97 AÊ resolution is obtained, which is

shown in Fig. 6(a). Comparison to the map in Fig. 6(b),

calculated from the known structure, clearly shows fair

agreement between the two maps.

6. Conclusions

The results of phase determination and extension presented in

the previous section can be summarized as follows:

(i) With 85 individual re¯ection phases as the starting

phase set, we have developed 120 additional phases via the

maximum-entropy procedures. The average deviations in

modulus and phase of the structure factor from those calcu-

lated from the known structure are about 1.5 electrons and

30�, respectively. The accuracy of the experimentally deter-

mined triplet phases from multiple diffraction patterns is on

the average about 30�.
(ii) The sensitivity of �2

H to correct phases developed in

the entropy-maximization procedure has been veri®ed as

described in x5 (see also Table 3). Moreover, a double check

has been carried out by replacing Fc
H 's in the constraints (16)

with the calculated FH's from the known structure. The

corresponding calculated �2
H value becomes much smaller

while the entropy and likelihood remain at almost the same

values.

(iii) The choice of the pixel number, namely the spatial

resolution in ��r�, seems affect the �2
H slightly at least for the

present low-resolution situation. The difference in �2
H between

8 � 8 � 4 pixels and 16 � 16 � 8 pixels for 47 re¯ections

(constraints) is less than 10%.
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Figure 4
Convergence of the phase � versus the number of triplet phase relations
used as the constraints for (a) 121 and (b) 110 re¯ections (dashed lines:
theoretical phase values).

Figure 5
(a) �2

H versus N for correct phases (solid circles) and wrong phases (open
circles). (b) Convergence of �2

H versus the number of iterations.
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(iv) From phase extension for a few re¯ections at low

resolution, it is sometimes dif®cult to get correct values. We

speculate that it might be due to lacking connections to other

re¯ections in multibeam interactions. Increasing the number

of pixels may sometimes help because the larger the number

of re¯ections involved in the entropy maximization, the more

connections among the re¯ections can be established.

In conclusion, we have demonstrated that, using the phases

determined from multibeam experiments as input to the

maximum-entropy calculation scheme derived in this paper,

we are able to generate more than 100 known phases without

carrying out further experiments. Re®nement of the experi-

mental phases can also be achieved. Approximate electron-

density maps can be calculated. The applicability of this phase-

determination scheme is not limited to small crystals. Macro-

molecular crystals can be handled by increasing the number

of pixels in the calculation. Up to now, with the help of

a supercomputer, a 64 � 64 � 64 pixels calculation can be

executed with our program. The present approach may

provide an alternative way for phase determination and

extension.
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Figure 6
The electron-density maps of the ab plane: (a) calculated from entropy
maximization; (b) calculated from the known structure. The fragments of
benzene rings are shown as a guide to the eye. The contour interval is
0.002 e AÊ ÿ3.


